
1 INTRODUCTION

Unlike “classical control” theory (ME 3801) which is based on Laplace transform repre-
sentations, “modern control” deals directly with systems described in ordinary differential
equation form. We assume that given a physical system, we have already developed our
equations of motion, in other words the modeling part is complete. The goal here is to affect
the dynamic response of the system such that it performs a specific task in a satisfactory
way. The first thing we have to do is to rewrite our differential equations of motion in their
state space form.

1.1 State Variable System Description

The state is a set of quantities such that given initial conditions x(t0) and all future inputs
u(t), all future response x(t) for t > t0 is uniquely determined. If not enough initial conditions
are specified, then more than one responses may be obtained; if too many initial conditions
are specified, then a solution may not be possible. Therefore, we can see that for any
dynamical system the number of states is unique; the choice, however, is not.

The state equations are a coupled set of first–order linear differential equations in the
state variables; i.e.,

ẋ = Ax + Bu ,

where

x : state vector, n × 1 ,

A : open–loop dynamics matrix, n × n ,

u : control vector, m × 1 ,

B : control distribution matrix, n × m ,

along with the output equation
y = Cx ,

where

y : output vector, r × 1 ,

C : sensor calibration matrix, r × n .

Physically, for mechanical systems, x represents the collection of positions and velocities of
the body (so for a complete description this must be twice the number of degrees of freedom),
u is the various actuators (such as thrusters, rudders, propulsors), and y the outputs (what
is available to us through observation or measurements).

As an example, consider the spring–mass–damper system shown in Figure 1. The equa-
tions of motion are

maẍa + kaxa + caẋa + c1(ẋa − ẋb) = f(t) ,

mbẍb + kbxb + cbẋb + c1(ẋb − ẋa) = 0 .

1

Figure 1: A spring–mass–damper system

If we take as states the position and velocity of each mass

x1 = xa ,

x2 = ẋa ,

x3 = xb ,

x4 = ẋb ,

we have the equations in state form as

ẋ1 = x2 ,

ẋ2 = − ka

ma

x1 − ca + c1

ma

x2 +
c1

ma

x4 +
1

ma

f ,

ẋ3 = x4 ,

ẋ4 = − kb

mb

x3 − cb + c1

mb

x4 +
c1

mb

x2 ,

and the A, B matrices are

A =

0 1 0 0

− ka

ma
−ca + c1

ma
0

c1

ma

0 0 0 1

0
c1

mb
− kb

mb
−cb + c1

mb

,

and

B =

0
1

ma

0
0

 .

It should be emphasized that here we treat the external force f as our control input, this
is of course legitimate if we can and are willing to change f at will so that we can affect
the response of the system. This is not always the case of course; there are external forces
that affect a given system and they act despite our will or even knowledge. These are called
disturbances, and a more general form of the state equations is

ẋ = Ax + Bu + Γw ,

2

where

w : disturbance vector, d × 1 ,

Γ : disturbance distribution matrix, n × d .

The above equations are linear; many dynamical systems, however, yield nonlinear equa-
tions of motion. The control design problem is significantly simplified when dealing with
linear equations and in such a case we need to linearize the original nonlinear equations
about a nominal operating point. This nominal point is physically defined usually by the
designer and, roughly speaking, should be the condition where the system is expected to
spend most of its life at. Usually, this is some sort of static equilibrium of the system which
corresponds to a specified value for the control effort.

To formalize things say we have a nonlinear system of state equations

ẋ = f(x, u) .

Fix the control vector u = u0, then

ẋ = f(x, u0) .

Solve the nonlinear coupled algebraic set of equations

f(x, u0) = 0 ,

to get the solution x = x0. This is our nominal point, and solution of this set of equations is
the most difficult part of the linearization process. Once x0 has been obtained, we linearize
ẋ = f(x, u) around the nominal point (x, u) = (x0, u0). To do this we expand in Taylor
series and keep the first order terms only,

f(x, u) =
∂f

∂x

∣∣∣∣∣
(x0,u0)

(x − x0) +
∂f

∂u

∣∣∣∣∣
(x0,u0)

(u − u0) .

Then by assuming the change in coordinates

x → x − x0 ,

u → u − u0 ,

the linearized system becomes
ẋ = Ax + Bu ,

where A and B are the constant Jacobian matrices of partial derivatives evaluated at the
nominal point (x0, u0)

A =
∂f

∂x

∣∣∣∣∣
(x0,u0)

,

B =
∂f

∂u

∣∣∣∣∣
(x0,u0)

.

3

Figure 2: A simple pendulum

The elements of A are given by

A = [aij] , where aij =
∂fi

∂xj

,

and similarly for B.

As an example, consider the simple pendulum shown in Figure 2. The equation of motion
is

m�2θ̈ + mg� sin θ = T ,

or

θ̈ + ω2
n sin θ =

T

m�2
, ω2

n =
g

�
.

Select as state variables

x1 = ωnθ ,

x2 = θ̇ .

The state equations are then

ẋ1 = ωnx2 ,

ẋ2 = −ω2
n sin

(
x1

ωn

)
+

T

m�2
.

For equilibrium (with no excitation, T = 0)

sin
x1

ωn
= 0 ⇒ (x1)0 = 0 or (x1)0 = πωn ,

ωnx2 = 0 ⇒ (x2)0 = 0 .

If we choose the down position to linearize we get

sin
x1

ωn

=
x1

ωn

and the linearized equations are

ẋ1 = ωnx2 ,

ẋ2 = −ωnx1 +
T

m�2
,

4

Figure 3: Variables definition for the submarine example

or [
ẋ1

ẋ2

]
=

[
0 ωn

−ωn 0

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸ ︷︷ ︸

x

+

 0

1

m�2

︸ ︷︷ ︸
B

T︸︷︷︸
u

.

Example: Consider the following equations of motion for a submarine in the dive plane
(refer to Figure 3)

(m − Zẇ)ẇ − (Zq̇ + mxG)q̇ = ZwUw + (Zq + m)Uq + mzGq2

+(W − B) cos θ + ZδU
2δ ,

(Iy − Mq̇)q̇ − (Mẇ + mxG)ẇ = MwUw + (Mq − mxG)Uq

−(xGW − xBB) cos θ − (zGW − zBB) sin θ − mzGwq + MδU
2δ ,

θ̇ = q ,

ż = −U sin θ + w cos θ ,

where

U = forward speed ,

w = heave velocity ,

q = pitch rate ,

θ = pitch angle ,

δ = dive plane angle ,

z = depth ,

W = weight ,

B = buoyancy ,

m = mass ,

5

Iy = mass moment of inertia ,

(xG, zG) = coordinates of center of gravity ,

(xB, zB) = coordinates of center of buoyancy ,

Zw = heave force hydrodynamic coefficient ,

Mq = pitch moment hydrodynamic coefficient .

Now say we want to linearize these equations for a level flight path when the dive plane angle
is zero, δ0 = 0. Then by setting all time derivatives to zero (this corresponds to equilibrium)
we get

ZwUw0 + (W − B) cos θ0 = 0 ,

MwUw0 − (xGW − xBB) cos θ0 − (zGW − zBB) sin θ0 = 0 ,

q0 = 0 ,

−U sin θ0 + w0 cos θ0 = 0 .

If we assume that the boat is neutrally buoyant xG = xB and W = B, we have

ZwUw0 = 0 ,

MwUw0 − (zG − zB)B sin θ0 = 0 ,

−U sin θ0 + w0 cos θ0 = 0 ,

from which we can get the nominal position

w0 = q0 = 0 , and sin θ0 = 0 ,

which means
θ0 = 0 , or θ0 = π .

These correspond to the two possible static equilibrium positions, like a regular or like an
inverted pendulum.

If we choose to linearize around the θ0 = 0 equilibrium we have

q2 = (2q0)q = 0 ,

wq = (w0)q + (q0)w = 0 ,

sin θ = (cos θ0)θ = θ ,

w cos θ = (−w0 sin θ0)θ + (cos θ0)w = w .

The linear equations of motion are then written as

(m − Zẇ)ẇ − (Zq̇ + mxG)q̇ = ZwUw + (Zq + m)Uq + ZδU
2δ ,

(Iy − Mq̇)q̇ − (Mẇ + mxG)ẇ = MwUw + (Mq − mxG)Uq − (zG − zB)Wθ + MδU
2δ ,

θ̇ = q ,

ż = −Uθ + w .

6

Figure 4: State equations from block diagram

In state space form these are written as

θ̇
ẇ
q̇
ż

︸ ︷︷ ︸
ẋ

=

0 0 1 0
a13zGB a11U a12U 0
a23zGB a21U a22U 0
−U 1 0 0

︸ ︷︷ ︸
A

θ
w
q
z

︸ ︷︷ ︸
x

+

0
b1U

2

b2U
2

0

︸ ︷︷ ︸
B

δ︸︷︷︸
u

,

where the coefficients aij, bi are given by

Dv = (m − Zẇ)(Iy − Mq̇) − (mxG + Zq̇)(mxG + Mẇ) ,

a11Dv = (Iy − Mq̇)Zw + (mxG + Zq̇)Mw ,

a12Dv = (Iy − Mq̇)(m + Zq) + (mxG + Zq̇)(Mq − mxG) ,

a13Dv = −(mxG + Zq̇)W ,

b1Dv = (Iy − Mq̇)Zδ + (mxG + Zq̇)Mδ ,

a21Dv = (m − Zẇ)Mw + (mxG + Mẇ)Zw ,

a22Dv = (m − Zẇ)(Mq − mxG) + (mxG + Mẇ)(m + Zq) ,

a23Dv = −(m − Zẇ)W ,

b2Dv = (m − Zẇ)Mδ + (mxG + Mẇ)Zδ ,

and zGB = zG − zB is the metacentric height. We will use the above equations of motion
as our main example case in these notes. It should be noted that the equations correspond
to Swimmer Delivery Vehicle 17.5 feet in length. This is not needed in the calculations that
follow but it gives an idea of the sizes involved. One thing we have to emphasize is that in
the submarine examples in these notes U is the forward speed (not control). The control is
designated by δ; this is standard notation (see ME 4823 for more details).

1.2 From Block Diagrams to State Equations

The transition between block diagram form (what we were using in ME 3801) and state
equations (what we are using in ME 4811) is relatively simple and can be divided into a

7

series of different cases.

1. State equations from block diagram

Suppose we have the block diagram shown in Figure 4, and we want to write a set of state
equations for this system. We observe that the system is third order (it has three integrators,
so its characteristic equation will be third order). Therefore, we need three state equations
and three states. One choice is to take as states the outputs of the integrator blocks. This
way we get

ẋ1 = x2 ,

ẋ2 = x3 ,

ẋ3 = −6x1 − 11x2 − 6x3 + 6u ,

and the output equation
y = x1 .

The A, B, and C matrices are

A =

 0 1 0

0 0 1
−6 −11 −6

 , B =

 0

0
6

 , C =

[
1 0 0

]
.

We note that the above choice of states is not unique, we could have selected as states the
outputs of the three feedback blocks; this would have produced a different but equivalent
(with the same input–output relationship) system of state equations.

2. Block diagram from state equations

Consider the following system of state equations

ẋ1 = a11x1 + a12x2 + b1u ,

ẋ2 = a21x1 + a22x2 + b2u ,

y = c1x1 + c2x2 .

The A, B, C matrices here are

A =

[
a11 a12

a21 a22

]
, B =

[
b1

b2

]
, C =

[
c1 c2

]
.

The block diagram is constructed as shown in Figure 5.

3. Block diagram and state equations from differential equation

Consider the transfer function between input u and output y

y

u
=

b1s + b0

s3 + a2s2 + a1s + a0
,

which is equivalent to the differential equation

y(iii) + a2ÿ + a1ẏ + a0y = b1u̇ + b0u .

8

Figure 5: Block diagram from state equations

This is a third order system, so we need three states. Let our first state be

x1 = y ,

so

y =
[

1 0 0
]
 x1

x2

x3

 .

Substitute x1 = y into the equation,

x
(iii)
1 + a2ẍ1 + a1ẋ1 + a0y = b1u̇ + b0u .

To lower the order let

ẋ1 = x2 , this is our first state equation

and substitute again
ẍ2 + a2ẋ2 + a1x2 + a0x1 = b1u̇ + b0u .

Now if we substitute x3 = ẋ2 we see that the u̇ term in the equation will survive, and
this goes against our general state space form ẋ = Ax + Bu. To eliminate the u̇ term we
substitute

x3 = ẋ2 − b1u or

ẋ2 = x3 + b1u this is our second state equation

One more substitution will then result in

ẋ3 + b1u̇ + a2x3 + a2b1u + a1x2 + a0x1 = b1u̇ + b0u ,

or
ẋ3 = −a2x3 − a1x2 − a0x1 + (b0 − a2b1)u ,

9

Figure 6: Block diagram and state equations from differential equation

which is the third state equation.

The state equations are
 ẋ1

ẋ2

ẋ3

 =

 0 1 0

0 0 1
−a0 −a1 −a2

 x1

x2

x3

 +

 0

b1

b0 − a2b1

 u ,

and the output equation

y =
[

1 0 0
]
 x1

x2

x3

 .

The above form of the A matrix is called a companion form (negative coefficients in the last
row, and ones in the superdiagonal).

The block diagram appears as shown in Figure 6.

1.3 From State Equations to Transfer Function

Consider the standard state space system

ẋ = Ax + Bu ,

y = Cx .

In the Laplace domain (with zero initial conditions) this becomes

sX(s) = AX(s) + BU(s) ,

10

Figure 7: A generic block diagram

Y (s) = CX(s) ,

or

(sI − A)X = BU =⇒ X = (sI − A)−1BU ,

Y = C(sI − A)−1BU .

If we compare the last expression with

Y (s) = G(s)U(s) , where G(s) is the transfer function

we can see that
G(s) = C(sI − A)−1B ,

is the transfer function of the system. This is of the familiar ME 3801 form only in the
case of a single input single output (SISO) system (i.e., both u and y are scalars instead of
vectors). In the more general case of a multiple input multiple output system (MIMO), it
is a transfer function matrix and its individual elements consist of transfer functions in the
usual sense. It can be thought of as a matrix of influence coefficients (the ij element of the
matrix depicts the transfer function between the i–th output and the j–input).

The above helps in constructing compact generic block diagrams, as shown in Figure 7.

ẋ = Ax + Bu , y = Cx

1.4 Poles and Zeros

Recall that for a system in the form

ẋ = Ax + Bu , y = Cx

its transfer function is written as

G(s) = C(sI − A)−1B .

11

The poles of the transfer function are defined as those values of s where the denominator
goes to zero. This means that

(sI − A) is a singular matrix, or

det[sI − A] = 0 or

s = eigenvalue of A .

The zeros of the transfer function are usually defined for SISO systems. In such a case
we have

G(s) = det
[
C(sI − A)−1B

]
,

and using properties of the determinant we get

det[C(sI − A)−1B] =
det[sI − A] · det[C(sI − A)−1B]

det[sI − A]

=

det

[
sI − A −B

C 0

]

det[sI − A]

where we used the fact that

det

[
A B
C D

]
= det A · det[D − CA−1B] .

Therefore, the zeros of G(s) are solutions of

det

[
sI − A −B

C 0

]
= 0 .

As an example, say we have the system

ẋ1 = −3x1 + x2 + u ,

ẋ2 = 2u ,

y = x1 .

The matrices A, B, C are

A =

[−3 1
0 0

]
, B =

[
1
2

]
, C =

[
1 0

]
.

The poles of the system are

det[sI − A] = det

[
s + 3 1

0 s

]
= s(s + 3) = 0 =⇒ s = 0,−3 ,

and the zeros

det

[
sI − A −B

C 0

]
= det

 s + 3 1 −1

0 s −2
1 0 0

 = 2 + s = 0 =⇒ s = −2 .

12

To verify this, let’s get G(s) using classical methods:

ẏ = −3y + x2 + u , or

ÿ = −3ẏ + 2u + u̇ , or

ÿ + 3ẏ = u̇ + 2u , or

Y (s2 + 3s) = U(s + 2) , or

Y (s)

U(s)
=

s + 2

s(s + 3)
,

which agrees with the poles and zeros from state space. These poles and zeros are usually
called open loop poles and zeros since no feedback control action has been defined yet.

Example: Consider the state equations for the submarine example, where the state vector
is

x = [θ, w, q] ,

the output vector is the pitch angle
y = θ ,

and the control input u is the dive plane angle δ

u = δ .

The state equations are the same as before. Typical values for the coefficients are

a11 = −0.064390823 , a12 = −0.1420481 , a13 = 0.1353290 ,

a21 = 0.025208820 , a22 = −0.1479027 , a23 = −0.3599404 ,

b1 = 0.0012883232 , b2 = −0.0034266096 ,

zGB = 0.1ft , U = 5ft/sec .

Using MATLAB and the above values we can find the transfer function

θ

δ
=

−0.0857s − 0.0235

s3 + 1.0615s2 + 0.3636s + 0.0099
,

and we can see that the open loop poles are simply the roots of the denominator polynomial

−0.5159 ± 0.2584i , −0.0297 .

These are also given by the eigenvalues of matrix A. Notice that the system is open loop
stable. This means that with no control action δ, if an initial disturbance is introduced in
the angle θ, it will go back to zero asymptotically. As the metacentric height zGB gets closer
to zero, one open loop pole goes to zero. (Can you see this from the form of the A matrix?
What is the physical significance of a zero pole?) The open loop zero is the root of the
numerator of the transfer function

−0.2742 .

13

The transfer function can also be computed by starting with the equations of motion

θ̇ = q ,

ẇ = a13zGBθ + a11Uw + a12Uq + b1U
2δ ,

q̇ = a23zGBθ + a21Uw + a22Uq + b2U
2δ ,

constructing the block diagram from δ to θ, and reducing it, as we did in Section 1.2.

1.5 Time Response Using State Equations

There are two ways to compute the time response of a system using the state equations:
numerical and analytical.

1. Numerical

State equations are naturally used in digital computer simulation. For example, if we use
Euler’s integration: given x(0) and u(0) at t = 0, then

x(t + ∆t) = x(t) + ẋ(t) ∆t .

∆t is the integration time step which must be selected small enough (with respect to the
natural time constant of the system) for results to be valid; and ẋ(t) = Ax(t) + Bu(t), in
other words we evaluate ẋ using the current value of x and u. Continuing the scheme, we
get

x(∆t) = x(0) + [Ax(0) + Bu(0)] ∆t ,

x(2∆t) = x(∆t) + [Ax(∆t) + Bu(∆t)] ∆t ,

and so on. Although Euler’s method is the simplest and most inaccurate numerical integra-
tion technique available, it is good enough for naval engineering problems where things do
not change very fast in time.

2. Analytical

We want the transient solution for

ẋ = Ax , x(t0) = x(0) ,

where x is the n× 1 state vector, A is the n× n open loop dynamics matrix, and x(0) is the
n× 1 vector of initial conditions. Recall that for a first–order system (n = 1) we would have

ẋ = ax , x(t0) = x(0) .

If we assume
x = αest ,

we get

ẋ − ax = 0 or

αest(s − a) = 0 or

s = a , an eigenvalue .

14

Therefore, the solution is
x = αeat .

The unknown constant α can be computed from the initial condition

x(t0) = αeat0 = x(0) ,

giving
α = x(0)e−at0 .

The solution is then
x(t) = ea(t−t0)x(0) ,

where

ea(t−t0) = 1 +
a(t − t0)

1!
+

[a(t − t0)]
2

2!
+

[a(t − t0)]
3

3!
+ · · ·

When the solution is extended to a matrix system (n > 1), the results are completely
parallel,

ẋ = Ax ,

with solution
x(t)︸︷︷︸
vector

= eA(t−t0)︸ ︷︷ ︸
matrix

x(0)︸ ︷︷ ︸
vector

,

where the matrix exponential is defined through a series expansion analogously to its scalar
counterpart

eA(t−t0) = I +
A(t − t0)

1!
+

[A(t − t0)]
2

2!
+

[A(t − t0)]
3

3!
+ · · ·

This is called the state transition matrix denoted by

Φ(t − t0) ≡ eA(t−t0) .

The state transition matrix expresses how the state is changed from its value at t0 to the
state at t by the system with open loop dynamics given by A

x(t) = Φ(t − t0)x(t0) .

We can obtain the complete solution with a control input u(t) as:

d

dt

[
e−Atx(t)

]
= e−At

 ẋ(t)︸︷︷︸

ẋ(t)=Ax+Bu

−Ax(t)

 = e−AtBu(t) .

Integrating,

e−Atx(t) =
∫ t

t0
e−AτBu(τ) dτ + c ,

where c is a vector constant of integration. Now at t = t0 we have

e−At0x(0) = c ,

15

giving

e−Atx(t) =
∫ t

t0
e−AτBu(τ) dτ + e−At0x(0) .

Multiplying through by eAt

x(t) = eA(t−t0)x(0) +
∫ t

t0
eA(t−τ)Bu(τ) dτ , t ≥ t0 ,

or

x(t) = Φ(t − t0)x(0)︸ ︷︷ ︸
transient

+
∫ t

t0
Φ(t − τ)Bu(τ) dτ︸ ︷︷ ︸
steady state

.

In most cases
transient = response due to initial state

and this will go to zero for a stable system, while

steady state = response due to input

is given by the above convolution integral. For linear systems, the total response is of course
the sum of the two responses.

The matrix exponential eAt can be computed using a couple of different ways.

• One way is with the above power series expansion

eAt = I +
At

1!
+

(At)2

2!
+

(At)3

3!
+ · · · .

This is efficient only numerically when the series can be truncated to an arbitrary
degree of accuracy. In general, these Taylor series are used to define rather than to
compute functions of a matrix (take a 2× 2 matrix and try to find its cosine using the
appropriate series expansion; then check your answer using MATLAB).

• If A can be diagonalized; i.e., if Λ = T−1AT where T is the matrix of eigenvectors of
A and Λ the diagonal matrix of the eigenvalues of A,

Λ = diag{λ1, λ2, . . . , λn} ,

then
eAt = T−1eΛtT ,

where
eΛt = diag

{
eλ1 , eλ2, . . . , eλn

}
.

We can easily see from the last expression why if at least one of the eigenvalues λi of
A is positive, the system will be unstable.

16

For time varying systems of the form

ẋ = A(t)x ,

the state transition matrix is denoted by

Φ(t, t0) ,

and the solution is given by
x(t) = Φ(t, t0)x(0) .

Notice that the state transition matrix for time varying systems is function of both the
current time t and initial time t0, unlike the time invariant system case where Φ was a
function of one variable only, t − t0, the time interval between t and t0. What is more
unfortunate is the fact that closed form expression for Φ(t, t0) does not exist which makes
analysis and control of time varying systems much more difficult than time invariant systems
considered here. As a word of caution, in general,

Φ(t, t0) �= e
∫ t

t0
A(τ)dτ

,

except when the matrices A(t) and
∫

A(t)dt commute; i.e., when

A(t)
(∫

A(t)dt
)

=
(∫

A(t)dt
)

A(t) .

Some general properties of the state transition matrix Φ(t, t0) are

1. It satisfies the differential equation with identity initial conditions,

Φ̇(t, t0) = A(t)Φ(t, t0) ,

Φ(t0, t0) = I .

2. It satisfies the semi–group property,

Φ(t, t0) = Φ(t, t1)Φ(t1, t0) .

3. It is always nonsingular,
Φ−1(t, t0) = Φ(t0, t) .

4. It has a computable determinant,

det Φ(t, t0) = e
∫ t

t0
traceA(τ)dτ

.

The main advantages of using the state transition matrix in system dynamics are two:

• Helps in proving other theorems.

17

• Once it has been determined, it makes calculation of the particular solution in response
to some initial conditions and input, much faster.

In general, the analytic method of solution is employed only for theoretic purposes or in
special circumstances; in almost all cases we obtain the solutions numerically. This has
the added advantage that it is not restricted to linear systems, nonlinear systems can be
simulated numerically in much the same way.

Example: Consider the submarine linear equations of motion

θ̇ = q ,

ẇ = a13zGBθ + a11Uw + a12Uq + b1U
2δ ,

q̇ = a23zGBθ + a21Uw + a22Uq + b2U
2δ ,

where we assume a dive plane deflection δ = −0.2 radians (−11.5 degrees). A simulation
algorithm using Euler’s integration is as follows:

• Step 1: Choose integration time step ∆t and initial conditions θ0, w0, q0. Set i = 0.

• Step 2: Using the values of θi, wi, qi, compute θ̇i, ẇi, q̇i from the equations of motion.

• Step 3: Compute

θi+1 = θi + θ̇i · ∆t ,

wi+1 = wi + ẇi · ∆t ,

qi+1 = qi + q̇i · ∆t .

• Step 4: Set i = i + 1 and go back to Step 2.

Typical results of the simulation in terms of the pitch angle θ are shown in Figure 8. As
with any numerical results, however, the real question is: are they correct? The answer to
this borders between art and science, and in the context of system simulations here is a set
of a few checks:

1. In this particular simulation we used a time step ∆t = 0.01 seconds. Is this small
enough? The easiest way to check this is to reduce (or increase) ∆t, say by a factor of
10, and re–run the program. If the results do not change, the above choice for ∆t was
good. A more rational way to do the same thing would be to look at the natural time
constant of the dynamics of the system. The system poles were found in page 18. It
seems that the fastest pole of the system has real part −0.5159, and the time constant
that corresponds to this is about 1/0.5 or 2 seconds. This means that it takes a couple
of seconds for the boat to “listen” to its dive planes, so ∆t = 0.01 should give very
accurate results. In fact in this case we could go as far as ∆t = 0.5 and we would still
be reasonably accurate.

18

2. Look again at the system eigenvalues: one of them is certainly dominant, −0.0297,
so the response should approximate that of a first order system with a time constant
1/0.0297, or about 33.5 seconds. Now look at the response of the figure: does it take
approximately 33.5 seconds to go up to 60% of its final value?

3. By now we are convinced that the transient response we see in the figure agrees with our
engineering intuition. How about the final or steady state value of the response? This
is something we can compute exactly. At steady state we should have, θ̇ = ẇ = q̇ = 0,
so that our equations become at steady state:

q = 0 ,

a13zGBθ + a11Uw + a12Uq + b1U
2δ ,

a23zGBθ + a21Uw + a22Uq + b2U
2δ .

Using q = 0, the second and third equations give

a13zGBθ + a11Uw = −b1U
2δ ,

a23zGBθ + a21Uw = −b2U
2δ .

Substituting δ = −0.2 and using the values from page 17 we find

θ = 0.476 radians or 27.3 degrees ,

a result which agrees with the figure.

Simulation of a nonlinear set of equations proceeds in a similar manner. Let’s assume
that the only important nonlinearities in our example come from the trigonometric functions
and not the hydrodynamic forces and moments; in other words the nonlinear equations of
motion are

θ̇ = q ,

ẇ = a13zGB sin θ + a11Uw + a12Uq + b1U
2δ ,

q̇ = a23zGB sin θ + a21Uw + a22Uq + b2U
2δ .

The numerical integration proceeds in exactly the same way as before; the only difference is
that here the values for ẇ and q̇ are computed from the new equations. Typical results are
shown in the previous figure where the difference between linear and nonlinear simulations is
also shown. Naturally, whenever possible, simulations must be performed for the nonlinear
systems since these model the underlying physics more accurately. The steady state value
for θ can be computed from the nonlinear equations in the same way as before, the algebra
is easy in the example case but keep in mind that for general nonlinear equations it may be
very difficult. Here we can find

sin θ = 0.476 or θ = 28.5 degrees .

19

Figure 8: Response for the submarine example

20

1.6 Canonical Forms

Consider the general state equations

ẋ = Ax + Bu ,

y = Cx .

We can introduce a similarity transformation which will transorm the system into a new set
of state variables; the eigenvalues will be unchanged:

x = Tx′ ,

ẋ = T ẋ′ ,

where x′ is the new set of state variables, and T is the transformation matrix. We can
substitute now into the state equations to get

T ẋ′ = ATx′ + Bu ,

or
ẋ′ = T−1ATx′ + T−1Bu ,

and
y = CTx′ .

The task is to choose T such that T−1AT looks “nice”.

If the matrix A has distinct eigenvalues λi with associated eigenvectors vi, we have

Avi = viλi ,

and we can group these together column by column to get

A
[

v1 v2 · · · vn

]
=

[
v1 v2 · · · vn

]
︸ ︷︷ ︸

T

λ1 0 · · · 0
0 λ2 · · · 0
· · · · · ·
· · · · · ·
· · · · · ·
0 0 · · · λn

︸ ︷︷ ︸
Λ

.

T is the modal matrix of eigenvectors, and Λ is the diagonal matrix of eigenvalues of A. We
then have

AT = TΛ , or T−1AT = Λ .

If we use the modal matrix as the trensformation matrix T , we will produce the normal
coordinate form:

ẋ′ = T−1ATx′ + T−1Bu = Λx′ + B′u ,

y = CTx′ = C ′x′ ,

21

Figure 9: Block diagram in control canonical form

where
B′ = T−1B and C ′ = CT .

There are other “nice” forms possible. Two of them are particularly attractive in control
systems.

Say we have a transfer function

G(s) =
Y (s)

U(s)
=

1

s3 + a2s2 + a1s + a0
.

A nice state space form for this system is (verify this)

 ẋ1

ẋ2

ẋ3

 =

 0 1 0

0 0 1
−a0 −a1 −a2

 x1

x2

x3

 +

 0

0
1

 u ,

and

y =
[

1 0 0
]
 x1

x2

x3

 .

The block diagram form is shown in Figure 9. This form of the A matrix is called control
canonical form, or first companion form, and is naturally used in controller design as we will
see later.

Consider the same transfer function

Y (s)

U(s)
=

1

s3 + a2s2 + a1s + a0
.

Another nice form for this system is (verify this)

 ẋ1

ẋ2

ẋ3

 =

 −a2 1 0
−a1 0 1
−a0 0 0

 x1

x2

x3

 +

 0

0
1

 u ,

22

Figure 10: Block diagram in observer canonical form

and

y =
[

1 0 0
]
 x1

x2

x3

 .

The block diagram form is shown in Figure 10. This form of the A matrix is called observer
canonical form, or second companion form, and is naturally used in observer design as we
will see later.

More generally, assume that our transfer function is of the form

Y (s)

U(s)
=

b2s
2 + b1s + b0

s3 + a2s2 + a1s + a0

.

The control canonical form is
 ẋ1

ẋ2

ẋ3

 =

 0 1 0

0 0 1
−a0 −a1 −a2

 x1

x2

x3

 +

 0

0
1

 u ,

and

y =
[

b0 b1 b2

]
 x1

x2

x3

 ,

with the block diagram shown in Figure 11.

The observer canonical form for the same system is
 ẋ1

ẋ2

ẋ3

 =

 −a2 1 0
−a1 0 1
−a0 0 0

 x1

x2

x3

 +

 b2

b1

b0

 u ,

and

y =
[

1 0 0
]
 x1

x2

x3

 ,

23

Figure 11: Block diagram in control canonical form including numerator dynamics

Figure 12: Block diagram in observer canonical form including numerator dynamics

24

with the block diagram shown in Figure 12.

You should, of course, verify the above forms! The main difference between the two
forms is that in the control canonical form the B matrix is “clean”, whereas in the observer
canonical form it is the C matrix that appears to be “clean” instead. In both cases, observe
that the characteristic equation of the A matrix can be obtained easily without any algebra.
This is a very nice property of matrices in companion form and is true regardless of the order
of the matrix. Finally, it should be emphasized that both forms represent exactly the same
physical system; the definitions for the state are different in the two forms. In practice, one
definition may make more sense than the other physically, and this is the one that should be
chosen. Although defining convenient states may make the algebra simpler, it is much more
preferable to choose as states variables that make sense physically; using MATLAB makes
all linear algebra calculations relatively straight forward.

1.7 Controllability and Observability

Consider the system

ẋ1

ẋ2

ẋ3

ẋ4

 =

2 3 2 1
−2 −3 0 0
−2 −2 −4 0
−2 −2 −2 −5

x1

x2

x3

x4

 +

1
−2
2
−1

 u ,

and

y =
[

7 6 4 2
]

x1

x2

x3

x4

 .

So far, the system looks nice. Let’s find the transfer function:

G(s) =
Y (s)

U(s)

= C(sI − A)−1B

=
(s + 2)(s + 3)(s + 4)

(s + 1)(s + 2)(s + 3)(s + 4)

=
1

s + 1
,

which is first order instead of fourth as the original system, due to the multiple zero–pole
cancellation. To see what went wrong, let’s transform the system to its normal coordinate
form by diagonalizing A. The matrix of eigenvectors of A is

T =

0.7071 0.4082 0.0000 0.0000
−0.7071 −0.8165 0.4082 0.0000
0.0000 0.4082 −0.8165 −0.4472
0.0000 0.0000 0.4082 0.8944

 .

25

Then using our familiar transformation

x = Tx′ or x′ = T−1x ,

the system is transformed into

ẋ′ = A′x′ + B′u ,

y = C ′x′ ,

where

A′ = T−1AT = Λ =

−1 0 0 0
0 −2 0 0
0 0 −3 0
0 0 0 −4

 ,

B′ = T−1B =

1.4142
0

−2.4495
0

 ,

C ′ = CT =
[

0.7071 −0.4082 0 0
]

.

The state equations are then

ẋ′
1 = −x′

1 + 1.4142u ,

ẋ′
2 = −2x′

2 ,

ẋ′
3 = −3x′

3 − 2.4495u ,

ẋ′
4 = −4x′

4 ,

and the output equation
y = 0.7071x′

1 − 0.4082x′
2 .

In block diagram the system in normal coordinates appears as shown in Figure 13. Looking
at this block diagram we can see the following

1. x′
1 : affected by the input; visible in the output;

2. x′
2 : unaffected by the input; visible in the output;

3. x′
3 : affected by the input; invisible in the output;

4. x′
4 : unaffected by the input; invisible in the output.

Therefore, it is fair to say that as far as the state variables go:

1. x′
1 : we can control it and we can observe it;

2. x′
2 : we can not control it but we can observe it;

26

Figure 13: Block diagram illustrating uncontrollable/unobservable subsystems

27

3. x′
3 : we can control it but we can not observe it;

4. x′
4 : we can not control it and we can not observe it.

The final transfer function, G(s), shows the first subsystem, x′
1, only.

In general, every system

ẋ = Ax + Bu ,

y = Cx ,

can be divided through a series of transformations into four subsystems:

1. A controllable and observable part.

2. An uncontrollable and observable part.

3. A controllable and unobservable part.

4. An uncontrollable and unobservable part.

This is known as Kalman’s decomposition theorem. The thing to remember is that the trans-
fer function of any system is determined only by the controllable and observable subsystem.
That is, the transfer function may contain less information than what is actually needed to
model the complete system.

The precise definition of controllability is:

• A system is said to be state controllable if any initial state x(t0) can be driven to any
final state x(tf) using possibly unbounded control u(t) in finite time t0 < t < tf .

From the state equations
ẋ = A︸︷︷︸

n × n

x + Bu ,

this should depend only on A and B. The test for controllability is as follows: Compute the

controllability matrix C =
[
B, AB, A2B, . . . , An−1B

]
,

and the system is controllable if and only if the rank of C (the number of linearly independent
rows or columns) is n. Roughly speaking, C shows how possible it is to change the state of a
system using the input. For a single input system B is n× 1 and C is a square matrix. The
test is then that C be nonsingular

det C �= 0 .

We can also test controllability by transforming to the normal coordinate form (with distinct
eigenvalues). The system is then controllable if B′ = T−1B has no zero row.

28

Example: Consider the submarine equations of motion
 θ̇

ẇ
q̇

 =

 0 0 1

a13zGB a11U a12U
a23zGB a21U a22U

 θ

w
q

 +

 0

b1U
2

b2U
2

 δ ,

and substituting the values for the coefficients
 θ̇

ẇ
q̇

 =

 0 0 1

0.0135 −0.3220 −0.7102
−0.0360 0.1260 −0.7395

 θ

w
q

 +

 0

0.0322
−0.0857

 δ .

The controllability matrix is

C =

 0 −0.0857 0.0674

0.0322 0.0505 −0.0653
−0.0857 0.0674 −0.0404

 ,

which is full rank, 3. Therefore, the system is controllable and we can change any state θ, w,
or q using the dive planes at will. Note, however, that some changes may be impractical or
even impossible in practice; for example, even if the system is controllable it is not feasible
to change the pitch angle to, say, 90 degrees! This would require an enormous dive plane
strength which is not available in practice.

The definition for observability is

• A system is observable if any value of the state x(t0) can be exactly determined using
a set of measurements over a finite period t0 < t < tf .

Observability depends on A and C only, and the test is: Compute the

observability matrix O =

C
CA
CA2

·
·
·

CAn−1

,

and the system is observable if and only if the rank of O is n. Roughly speaking, O shows
how possible it is to reconstruct the state, x, of a system using a limited set of measurements,
y. For a single output case C is 1× n and O is a square matrix. The test is then that O be
nonsingular

detO �= 0 .

We can also test observability by transforming the system to the normal coordinate form
(with distinct eigenvalues). The system will then be observable if C ′ = CT has no zero
column.

29

Example: Consider the previous submarine equations of motion, and assume that the only
sensor aboard measures the pitch angle, θ. The measurement equation is

y =
[

1 0 0
]

 θ
w
q

 .

Using A and C, the observability matrix is

O =

 1 0 0

0 0 1
−0.0360 0.1260 −0.7395

 ,

and this has rank 3. Therefore the system is observable: using θ measurements only we can
get an estimate of both heave velocity w and pitch rate q (how to do this we will see later).

Now let’s say we are interested in depth as well. The linear equation for the rate of
change of submarine depth, z, is

ż = −Uθ + w .

If we incorporate this as our fourth state equation, the new A matrix is now 4× 4 and B is
4 × 1. Keeping the same measurement, θ only, we have

C =
[

1 0 0 0
]

.

If we compute the observabilty matrix O, its rank is 3 instead of 4. Therefore, the system
is unobsvervable and one state (4 − 3 = 1) can not be estimated by looking at the angle θ
only. This is, of course, z. If we assume that we have measurements of z only,

C =
[

0 0 0 1
]

.

The new observability matrix has now full rank (4) which means that using a depth sensor
only we should, in principle, be able to guess all the rest: θ, w, and q. The formalization of
this “guess” constitutes the observer or estimator problem we discuss in Section 3.

30

